there was further differentiation for amongst only the K-ras mutant cases

With QTA, positive skewness without filtration, lower SD without filtration or with fine-texture, and lower kurtosis with coarse-texture are prognostic for shorter OS. It is encouraging that the same QTA features and directional orientation that differentiate K-ras from pan-wildtype are prognostic for OS. The main difference is that less stringent filtration settings were required to show demonstrate OS differences. Interestingly,DHED patients with K-ras mutant tumors with higher kurtosis had no significant differences in OS from patients with pan-wildtype tumors. This finding may reflect phenotypic variability amongst K-ras mutations associated with differences in tumor aggression. Phenotypic variations with variable treatment responsiveness have been observed within K-ras mutations related to different amino acid substitutions of the mutation. Although in this dataset, an argument for differential response to treatment is likely irrelevant because during the years 2001–2007, few patients were even eligible for adjuvant systemic therapy. For DFS as with OS, older age is associated with inferior outcome. By QTA, lower mean and lower kurtosis without filtration are prognostic for shorter DFS. Interestingly, when analyzing QTA in K-ras mutant and pan-wildtype cases separately, there was further differentiation for OS amongst only the K-ras mutant cases. QTA features included SD with fine texture and kurtosis with coarse-texture. In K-ras mutant cases, ZQ-16 consistent with the entire dataset, higher SD was associated with shorter OS. The ability to rapidly and noninvasively characterize NSCLC tumors would be a great asset to clinical oncologists. This type of endeavor would require coordination between radiologists, pathologists, and oncologists to develop the workflow to confirm established biomarkers for NSCLC with the flexibility to be able to add newly discovered and clinically validated biomarkers. QTA applied to molecularly defined NSCLC cases may have broader application to Precision Medicine by offering a noninvasive modality that could help identify appropriate or inappropriate molecularly defined targeted therapy, particularly since QTA can utilize digital images already acquired during standard of care treatment. All cancer cells have somatic mutations in their genomes, such as single nucleotide mutations, insertions, deletions, and copy-number gain or loss.